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INTRODUCTION

Monte Carlo simulation of statistical systems is a well estab~
jished technique of the condensed matter physicist. In the last
few vears, particle theorists have rediscoverad this method and are
having a marvelcus time applying it to quantized gauge field
rheories. The main result has been strong numerical evidence that
the standard SU(3) non-Abelian gauge theory of the strong inter-
action is capable of simultamecusly confinging quarks into the
physical hadrous and exhibiting asymptotic freedom, the phenomenon
of quark interactions being small at short distances.

In four dimensions, confinement is a non-perturbative phencme-~
non. Essentially all models of confinement tie widely separated
quarks together with "strings" of gauge field £lux, This gives
rise to a linear potential at long distances

E{t} ~ Xr (1.1

T
where r is the quark-antiquark separation and the constant K is
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referred to as the string tension. As K is physical, it must

satisfy the renormalization group equation. This implies the form
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where g, is the bare coupling when an ultraviolet cutoff of length
a is intreduced, and the parameters Yo and Y, are the first terms

in a perturbative expansion of the Gell-Mann Low func:ion1

a -3; g, = vig,) = vogg * vlgg + Ong) (1.3)

The important observation is that eq. (2) precludes any perturbative
expansion of K Iin terms of g, -

A non-perturbative treatment requires a non-perturbative regula-
tor to control the ultraviolet divergences so rampant in field
theory. Wilson's elegant lattice formulation provides this needed
cutoff.2 Once formulated on a lattice, the gauge theory becomes
a statistical mechanics problem im which temperature correspends to
the square of the field theoretical coupling comstant. It is this
analogy which permits us to borrow Monte Carlo techneology from the
solid state physicist.

A Monte Carlo program gemerates a sequence of field configur-
ation by a series of random changes of the fields. The
algorithm is so comstructed that ultimately the probability demsity
for finding any given configuration is proportional to the Beltzmann
welghting. We bring our lattices into "thermal equilibrium" with a
heat bath at a temperature specified by the coupling comstant. Thus
we do computer "experiments" with four-dimensional "crystals" stored
in a computer memory. As the entire fisld configuration is stored,
we have access to any correlation function desired.

In the rewmainder of these lectures I will describe the kinds of
experiments we have been doing and the implications of these results

for strong interaction physics.



THE MODEL

We work with Wilson's formulation of a gauge field on a 1attice.2
A link wvariable U 5 which is an element of the gauge gICouP, is
associated with every nearest neighbor pair of sites i and j on a
four-dimensional hypercubic lattice. The reversed link is associated

witk the inverse element

-1
U,, = (Uji) (2.1

ij

The path integral

- I -8> (U3

defines the quantum theory. Here we integrate over all independent
1ink variables with the invariant group measure. The action S is a

sum over all elementary squares Or "plaquettes' in the iattice
g(U) = E S (2.3)
where for SU(N) we normalize
= (1 - Tr (U U k Kl 11)) {(2.4)
and for U(L)

Sg = 1 - Re(U; Uy U1 Upg)

(2.5)
Here i, j, k, and 1 label the sites circulating about the square 7 .

In a classical continuum limit we identify

Uy - o183 (2.6)

where a is the lattice spacing, and A‘J is the gauge potential in

the direction u which points from i to j. The potential is regarded
as an element of the Lie algebra for the gauge ZTOup. In a naive
continuum limit for SU(N) the action reduces to an integral over

space-time of the conventional Yang-Mills Legrangian3

;2
g = 22 fﬁ A 2.7)
gv uv



We refer to this limit as "naive" because for the full quantum
theory the bare coupling comstant must be renormalized.

Equation €.2)is the partltlon function for a statistical system
at temperature T = 1/8 = g /ZN. The most intuitive Monte Carlo al-
gorithm consists of successzvely touching a heat bath at this temper-
ature to each link of the lattice. By this I mean to take each U, 13
In turn and replace it with a new group element U'J, selected
randomly from the entire group manifold but with a weighting propor-
ticnal to the Boltzmann factor

dP(U') ~ exp [-gs(u")] au’ (2.8)

where S(U') is the action evaluated with the given link having the
value U' and all other links fixed at their current values. One
Monte Carlo iterationm refers to the application of this procedure
to each link in the emtire lattice.

I have used precisely this algorithm for the SU(2) th-eory4 and
smaller groups. For larger groups I have found it computationally
simpler to use less intuitive but standard algorithms from statistical
mechanics. These are discussed in the next Section and cap be
competitive with or better than the heat bath algorithm for groups
with sufficiently complicated manifolds.

MONTE CARLO ALGORITHMS

The goal of a Monte Carlo program is to genmerate a sequence
of field configurations in a stochastic manner so that the ultimate
probability density of encountering any given configuration C is
proportional to the Boltzmann weighting

p(e) ~ e BS(c) (3.1)

where S(c) 1s the action of the given configuration. We thus use
the computer as a "heat bath" at inverse temperature f. Each state
in the Monte Carle sequence is obtained ig a Markovian process from
the previous configuration. Thus we have a probability distribution
P(c',c) of taking any configuration c inte configuration ¢'. The
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choice of P(c',c) is by no means uni@ué;s Most algorithms in prac-
tice change cne statistical variable at a time in 2 manner satisfying
a condition of detailed balance

P(c',c)e-ss(c) = P(c,c')e_ss(c') (3.2)

Indeed, this condition plus an eventual access to any configuration
will ultimately give the Boltzman distributiom of eq. (3.1).
I will now show that an algorithm satisfying eq. {3.2) brings

an ensemble of configurations closer to equilibrium. To do this,

T need a definition of "distance" between ensembles. Suppose we
have two ensembles E and E', each of many configurations. Suppose
also that the probability density of configuration ¢ in E or E' is
p(e) or p'{c), respectively. Then I define the distance between E

and E' as
||e-&']] = EIP(C) - p'(e)] (3.3)

where I sum over all possible configuratioms. WNow suppose that E'
is obtained from E by the Monte Carlo algorithm defined by a P{c',c)
satisfying eq. (3.2). This means that

p'(c) = Lr P(c,edple’) ' (3.4)
As P(c',c) is a probability, it satisfies

P(c',e) > 0 (3.5)

Ly P(e'ye) =1 (3.6)
Note that if we sum eq. (3.2) over c' and use eq. (3.6), we obtain

e-BS(c) - E. Ple,c") e-BS(c') (3.7) -

This means that the equilibrium ensemble Eeq, defined by eq. 3.1),
is an eigenvector of the algorithm. Using thils, we can now compare

the distance of E' from Eeq to the distance of E from equilibrium
L - ' Yy o '
|le Eeqll IEr Ble,e) (ple") = pgqyle )

¢ Ple,e") ip(c')-peq(C')[ (3.8)
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This is just the result I set ocut to prove; the algorithm reduces the
distance of an ensemble from equilibrium.

The detailed balance condition of eq. (3.2), which is sufficient
but not necessary to approach equilibrium, still does not uniquely
determine P(c',c). The intuitive heat bath algorithm was discussed
in the last section. In its turn, each link variable U is replaced
with a new group element U' selected randomly from the gauge group
with a weighting given by the Boltzmann factor

P(U') ~ o BS@") (3.9)

Here the action is calculated with all other links fixed, at their
current values. A detailed discussion on how to implement this
technique for SU(2) is given in ref. (4).

For complicated group manifolds, the heat bath generation of new
elements may be too tedious to carry out efficiently, either for
cbmputational or human reasons. Several less intuitive algorithms
based on the detailed balance condition have shown their value
through their simplicity.5 A popular procedure begins with the
selection of a trial U' as a tentative replacement for U. This test
variable is selected with'a distribution PT(U,U') depending on U and
symmetric in U and U'

PT(U,U') = PT(U',U) (3.10)

Beyond this comstraint, P is arbitrary and can be selected empirically
to optimize convergence. Once U' is selected, the new action S$(U') is
calculated. If the action is lowered by the change U»U', them this
change is accepted. The detailed balance condition then determines
the remainder of the algorithm; if the actionm is raised, the change

is accepted with conditional probability exp{-8(S(U')-S(U))}.

To implement eq. (3.10) in practice, I usually obtain U’ by
multiplying U with a random group element from a table, where this
table is itself of random elements with a convenient weighting
towards the identity. The table contains the inverse of each of
its elements. I revise this table frequently and adjust its

distribution as a function of the temperature to improve convergence.



In a gauge theory, the interactioﬁ is rather complicated and
involves considerable arithmetic to evaluate. Therefore it can be
extremely beneficial to do as good a job as possible in selecting
the stochastic changes. In terms of computer time to reach equili-
brium, it is usually of value to test several trial group elements
before proceeding to the next link. In this way I typically use on
the order of 10 to 20 tries.

SOME "EXPERIMENTS"

I will now display the results of some simple experiments.
Figure 1 shows several Monte Carlo runs with the gauge group sU(2)

at the particular coupling

g = if = 2.3 (4.1
8o .
. * ! T T
0.6+ 4
x 4% LATTICE

k]
08 1 oo iZizzuxsxxzaiiaszizgsiBvey

02
w 0.6 ]
= ey 64 LATTICE
x
g 0.4 ‘¢.:§‘.‘,’.‘§fl‘EE;!::*‘*'SIIH:;x: -
<
-
o 0.2‘: =
Hos E
x
= ‘. 8% LATTICE
=
w04 pere s FEEEYEFEXEEXTEN AR B NATE .
q -*
Q.2 ’: -
osf E
x
.~ 1Q4 LATTICE
0.4 = ’,,::535&1133!&8:::::;:::::: e
.
0.2+ <
1 M 1
ol 10 20 30
ITERATIONS

Fig. 1 The average plaquette for SU(2) gauge theory at 8 = 2.3
as a function of number of Monte Carlo iterationms.



This value was selected as representative of the slowest convergence
in this model. Runs are shown on lattices of 4° to 10% sites. I
have plotted the "average plaquette" which is just the expectation
value of 5 defined in eq. (2.4). This is shown as a function of the
number of Monte Carlo iterations., For each size lattice, two differ-
ent initial configurations were studied, ome totally ordered with each
Uij set to thg identity and one with each Uij selected randomly from
the group. Thus we approach equilibrium from opposite extremes, zero
and infinite temperature. Note that for all lattice sizes convergence
is essentially complete after only 20-30 iterations. Thermal fluc-
tuations are apparent on the smallest systems but are relatively small
ont the 104 site crystal.

The situation can be much worse if a phase transition is nearby.
In Fig. 2 I show the couvergence of the U(l) lattice theory on a 64
lattice near the knowm critical temperature for this model. In
addition to the slow convergence compared to SU(2), note the large
critical fluctuations. Thus we conclude thart convargence is rapid
away from a2 phase transitiom énd slow near one.

In Fig. 3 I show a different type of experiment, Here I have
performed rapid thermal cycles on the SU(2) theory in 4 and 5 space~
time dimensions and the SO(2) = U(1l) theory in four dimensions.6
Each point was obtained by runming on the order of 20 iterationms
from an either hotter or cooler state. Phase transitioms are to be
suspected in regions where the heating and cooling points do not
agree. Such "hysteresis" phenomena are clear for the 5 dimensional
SU(2) and the four dimensional U(l) models. More detailed analysis
has indicated that the U(l) tranmsition is second order7 and the 5
dimensional SU(2) transition is first order. WNote that the &4
dimensional SU(2) model is in sharp contrast to the others. The
lack of any clear hysteresis shows the critical nature of four
dimensions.
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Fig. 2 The convergence of U(l) lattice gauge theory at B =1.0.

THE STRING TENSION

As mentioned earlier, because the entire lattice is accessible,
any desired correlation function can be obtained. As we are
jinterested in the interquark potential, I can imsert sources with
quark quantum numbers into the lattice and measure the response.
In particular, I wish to extract the coefficient X of the hypo-
thetical long distance linear potential of eq. (1.1). Measuring
distances in units of the lattice spacing, one actually measures
the dimemsionless combination azK as a function of the bare’
coupling. If the linear potential survives a continuum 1imit, the
weak coupling dependence of azK follows from eq. (1.2). Verifi-
cation of that behavior is essential to understanding confinement.

The extraction of K is made using Wilson loops. For a2 closed
contour C of links, the Wilsom loop is defined
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Fig. 3 Thermal cycles on several models.

1
W) =<3 1Tr (g Dp.0.”

Here P.0. represents ''path ordering”; that is, the Uij are ordered

(5.1)

and oriented as they are encountered in ¢irculating around the
contour. If, for large separationms, the interaction emergy of two
static sources in the fundamental representation of the gauge
group increases linearly with distance, then, for large contours,

one expects
n W(C) = -K A(C) + 0 (p(C)) (3.2)

where A(C) is the minimal area enclosed by C and p(C) is the
perimeter of C. The constant K is precisely the desired string

tension.

‘10"
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Thus motivated, I measured the expectation values of rectangular
loops W(I,J) when I and J are the dimensions of the loop in lattice

. 8 . .
units. From these loops I construct the quantities

W(L,W(I-1,J-1)

X(T,9) = & G a1y

). | (5.3)

In this combination overall coastant factors and perimeter behav-
ior eancel out. Whenever the loops are dominated by an area law,

X{1,J) directly measures the string temsion
X + a’K (5.4)

This happens when I and J are large and also when the bare coupling
is large. However, in the weak coupling limit with I and J held

fixed, X should have a perturbation expansion

X(T,D) = G52 + 0(g3) (5.5
For example,
s’ Su(2)
x(1,1) = (5.6)
870) 1
3 &, SU(3)

This power behavior is radically different from the essential

singularity expected for the right hand side of eq. (5.4)

2
(=y{/v.")
a%x —EE (yogoz) 1o exp(-lf(Yogoz) : (5.7

gOZ+O Ao

This defines the asymptotic freedom scale Ao and is just a rewriting
of eq. (1.2). In summary, for strong coupling we expect all i,
to equal the coefficient of the area law but, as goz is reduced,
small I and J should give a x deviating from the desired value.

Thus the envelope of curves of x(I,J) plotted versus +he coupling

should give the true value of azK.
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Fig. 4 The quantities %x(I,I} for SU(2) gauge theory as a
function of go‘z .

In Fig. 4 I plot X(I,I) for I = l-4 versus l/go2 for the
gauge group SU(2). At stroang coupling the large loops have large
ralative errors but are comsistent with X approaching the values
from smaller loops. On this graph I also plot the strong coupling

limit for all v

4

X (1,9) = sa(g ) + 0(g, ™ (5.8)

The weak coupling behavior of eq. (4.7) is shown as a band corres-
ponding to
Ay= (L3+.2) x 107278 (SU2)) (5.9)

Figure 5 shows the same analysis for SU(3). Here the strong coupling
limic is

12
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x(L,3) = m(3g,") + 0(g ) (5.10)
and the band for Ao is

Ay = (5.0 £1.5) x 107 /& . (SUC3) (5.11)

At first sight the small numbers in egs. (4.9) and (4.11) were
rather surprising, as the pure gauge theories have no small dimension-
less parameters. However, the value of Ao is strongly dependent on
renormalization scheme. Hasenfratz and Hasenfratzg have done a
perturbative calculation relating this Ao to the more conventional
AMOM defined by the three-point vertex momentum subtracted in

Feynman gauge. They f{ind

A = 5705 0, suc@) (5.12)
MO L g3 s A sU3) (5.13)
9 g
1 I -t
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Age(5.0% 1.5) x10°3 /K
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; o . I2 -
= L . -
ot _
= 11s2 >
— b3 -
i g
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0 e.5 L0 .5 2.0

1/ge
o
Fig. 5 The quantities x(I,J) for the SU(3) theory.
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These factors largely compensate for the small numbers for
Ao. If we accept the string model correctionlo between K and the

Regge slope a'
K=1/(2ma") (5.4)

and use o' = 1,0 (GeV)-z, then we conclude for SU(3)

MO

A 2 170 + 50 Mev (5.15)

Phenomenological interpretationof this value requires an understanding
of the neglected effects of virtual quark loops.

THE CONTINUUM LIMIT AND THE RENORMALIZATION GROUP

One of the marvelous features of Monte Carlo simulation is that
the entire lattice is stored in the computer memory and therefore one
can in principle measure any desired function of the fields. Indeed,
the most diffiecult part of this technique is deciding just what to
measure. Of course, we are ultimately interested in taking the
continuum limit of our lattice theory. Renormalizatrion group
techniques tell us how to adjust the coupling constant for this
limit. Nom-Abelian gauge theories are asymptotically free, which
for our purposes means that the bare charge must be taken to zero.11
This should be done in such a manner that physical observables
remain finite. In this section I will review the renormalization
group prediction, and then present some Monte Carlo measurements
verifying asymptotic freedom.

In a conventionazl perturbative treatment, one defines a re-
normalized coupling 8p in terms of a physical observable at a scale
of mass u, The precise definition is meraly a conveantion, but to
lowest order it should agree with the bare charge

.3
gR(gotusa) = gO + O(go ) (6.1)
where a is the lattice spacing or cutoff scale. The variation of

gp with the scale of definition gives rise to the Gell~Mann Low

function
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Y(gR) = -u %; &r (go,u,a) . (6.2)

If the continuum limit is physically sensible, then Y(gR) should
remain a finite function as a is taken to zero. For SU(N) a pertur-

bative evaluation of Y(gR) gives
3 5 7
Y(gg) = o8 * Y18 T 0(gy) (6.3)

where Yo and Yy are independent of renormalization scheme and have

the wvalues

y, = 3 ®/16 70 (6.4)
34 2,2
v, = 3% (816 1) (6.5)

Remarkably, if a perturbative analysis is ever valid, then
eq. (6.3) tells us how g, must be varied as a function of a for a
continuum limit. In this limit, the renormalized g, should not

vary; thus, we conclude

g g g
_ .4 _ R R 0 {6.8)
0=ag, gglgyma) =ag—+ %, 33
Simple dimensional analysis tells us
3g g
R R
azz =THI " v{(gg) (6.7
Combining the previous equations gives
330 7
azz =v(g) + 0(g,") (6.8)

A little algebra shows that the O{gos) corrections cancel in this
equation. Indeed, dropping the corrections in eq. (6.8) gives rise
to a definitiom of an alternative Gell-Mann Low function.

If go(a) is ever small enough that 0(307) terms can be ngglected
in eq. (6.8), then we can integrate to obtain -

8. 2(@) = (r (/A 2aD) + (ry/r )t/ 479 + 0g, N ™
(6.9)

Here Ao is an integration constant which determines the scale of a
logarithmic decrease of go2 as the lattice spacing is reduced.
We would like to check this logarithmic decrease with our

Monte Carle simulation. In particular, if we measure some general



physical observable P as a function of 8y0 3s and the scale r = uﬂl,

P= P(r,a,go(u)) (6.10)

then P should not change as we vary a and 8, in the way indicated in

eq. 6.9. Thus, for a factor of two change in cutoff we eaxpect
a a 2
P(r,§3gOG§D) = P(r,a,go(a)) + 0{a") (6.11)

In general, there are two classes of dimensional parameters which

set the scale for the finite cutoff corrections in this equation.
First is the scale r used to define P, As our lattices in practice
are rather small, these corrections must be optimistically ignored.
Second, there are the dimensional parameters characterizing the
continuum theory. Regardless of the value of r, we expect corrections

2m2 where m is a typical hadronic mass. One should not

of order a
trust the lattice theory phenomenologically when the lattice spacing
is larger than a proton.

Assuming P is dimensionless, we can scale a factor of two from

both r and a to obtain
P(2r,3,8,(3)) = P(r,a,5,(a)) (6.12)

Thus az measurement at two different physical scales relates the bare
coupling at two values of cutoff.

The most studied "order parameter” im lattice gauge theory is
the Wilson loop.2 We would like to use the loops to define a
physical observable. Unfortunately, the bare loop at finite fixed
size cannot be used because of ultraviolet divergences. These are
of a rather trivial nature, arising from the infinitely thin contour.
They represent the self energy of pointlike sources circummavigating
the loop. To proceed, we assume that removing divergences propor-
tional to the loop perimeter and divergences from sharp corners,
inevitable in our lattice formulation, as well as appropriately
renormalizing the bare charge, will leave the finite physical part
of the Wilson loop. This immediately implies that ratios of loops
with Ehe same perimeter and number of corners remain finite in the
continuume limit. Thus motivated, we define the two fumctions of

bare couplingl3

16



_W(2,2) W@,1)

F(g) = 1 (6.13)
° W(1,2))>
“and
ca) =1 - W4, 4) W(ZEZ) (6.14)
W(2,4))

Here W(I,J) is a rectangular Wilson loop of dimensions I by J in
lattice units.
In eq. (6.13) we have effectively taken r = 2a in the more

general ratio

rr r r

P(r,a,go) =1 - (6.15)
rr 2
(W(Zp"f;))
For smail = this can be expanded perturbatively
bra) = pgl + 0@ + 0cs 8.0 (6.16)
i+ 1% il r2 Q )
where for SU(2)
_3 - 1 5. '
p; = 5 |8 arctan 2 + 2 arctan 3 - Zr - & m(Z)] (6.17)
16m
= 0.049559841....
Conversely, in the strong coupling limit
Fg ) =1 -3%+0(. " (6.18)
o 2 c '
B
1 -12
G(gy) = 1 -~ =5 +0(g, ) : (6.19)

&

In Fig. 6 I show the Monte Carlo results for the functions F
and G of eqs. (6.13) and (6.15). Note that the function G always
appears to lie above F and that both functions are monotonic
increasing in goz. Thus we ccuclude from eq., (6.12) that the bare
charge is a monotomic function of the cutoff, decreasing to zero
as the cutoff is removed. In this figure I also show the weak
coupling limit of eq. (6.16) and the strong coupling limits in
eqs. (6.18) and (6.19).

17



1.Q v
. 8
» F(goj
0.8+ AL
Q.7H
Q.8
@
o 0.5k
0.4
0.3k }.
Q.2
; -
o1 §
L) .050 gg
00 ; ]
2
92 3

¢ F(Bg)
o7k * SUFr - gy ma'h

Q.6
= 0.5

0.4~

Q.3 .{

Q.24 ?

Fig. 7 Testing asymptotic freedom.

[T S -

18-,



Asymptotic freedom predicts a logarithmic decrease of g02 with
cutoff when we approach the continuum theory. Using eq. (6.9),
we thus expect

Fg) = 6y - 2

[}

/2

5 n2) M2 4 O(gOB)) (6.20)
12w

In Fig. 7 I show the function F and G plotted again versus goz

but with G shifted by the amount indicated in eq. (6.20). YNote the

excellent agreement with the asymptotic freedom prediction. This is

rather astonishing in the light of neglected finite cutoff corrections.
The function P in eq. (6.15) should have a finite continuum

limit. Therefore we can use it to definme a renormalized charge at

scale r. Thus absorbing the higher order terms in eq. (6.16), we

define

2 _ 2im
g(r)—a

S0 P(r’aygo(a)/Pl (6.21)

Optimistically assuming a is small enough in our function F, we calculate

g? (r=22) = F(g, (@) /P, (6.22)

In Fig. 8 I plot g-z(Za) versus goﬂz. At large inverse charge
these points approach a straight line, for which the unit slope is
a test of our neglect of finite cutoff corrections. The intercept
of this line measures the A parameter associated with this definition

cf g

3. 2
— - - 28, @) + oD (6.23)

g, (a) 8°(2a) ¥

From the graph we obtain

A= 22 Ao (6.24)

This number is in principle calculable in perturbation theory.

19
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PHASE TRANSITIONS AND VARIANTS ON THE WILSON ACTION

In Fig. 9 I show the results of some Monte Carlo experiments
with the gauge group S0(3). Figure %a is a thermal cycle of this
model around SA = 2.5. Note the apparent hysteresis effect. Figure
9b shows the results of 100 iteration rums at BA = 2.5 from ordered
and disordered initial states. Note the appearance of two distinct
stable phases. The action per plaquette is normalized

Sg = 8,(1 - + Tr) (7.1)

where U, is the product of the SO(3) matrices around the plaquette
in question. The quantity P plotted in Fig, 9 is the expectation
value of Su. Thus SO(3) lattice gauge theory has a first order
phase cransitibn.IA This is rather peculiar in that the continuum
S0(3) and SU(2) gauge theories are identical.

In Fig. 10 I show the results of four Monte Carlo runs with the
gaage group SU(5) at go-z = 1.67. The upper and lowe: runs are from
random and ordered starts, respectively. The intermediate runs are

from superheated and supercooled states. The appearance of two
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Fig. 9 a. A thermal cycle on the S0(3) model on a 5& iattice.
b. FEvolution of the S0(3) model at 8 = 2.5 from ordered
and disordered initial states.

distinct asymptotic values for P is indicative of a first order
phase trapnsition in this system as well.ls The eritical coupling
is g 2 = 1.66 + 0.03.

As these groups are nou-Abelian, these transitions are pre-
sumably not simple deconfinement. Onme possibility is that they
represent a dynamical symmetry breakdown into smaller gauge groups.
More mundanely, they might all be artifacts of the lattice actiom.
To see that a change in formulation can modify the phase structure
of a gauge theory, Bhanot and I have studied the SU(2) theory with

the more general acticn.l6

S = B(l-1/2 TrU,y) + BA(1-1/3 TrAqu) (7.2)
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Here the first term is the usual Wilson action and in the second the
trace TrA is taken in the adjoint representatiomn of SU(2). This model
has three simple limits: (1) 8, =0 is the usual SU(2) theory, (2)
g =0 is the S0(3) model, and (3) SA + o= raduces to ZZ lattice gauge
theory at iaverse temperature 8. Both limits (2) and (3) have non-
trivial phase structure.

Using Monte Carlo techniques, we have obtained the phase diagram
shown in Fig. 11. Both the Z, and S0(3) transition are stable and

meet at a triple point located at

(B,BA) = (0.55 + 0.03, 2.34 *+ 0.03) (7.3)
A third first order line emerges from this point and ends at a critical
point at

(8,8,) = (1.57 + 0,05, 0.78 % 0.05) (7.4)

The conventional SU(2) theory exhibits a narrow but smooth peak
in its specific heatl7 at 8 = 2.2. This is directly in line with a
naive extrapolation of the above first-ordexr transition to the 8
axis. Thus this peak is a remmant of that transition and a shadow
of the nearby critical point.

The continuum SU(2) theory should be unique for all physical
observables. The connection between the bare field theoretical
coupling and the parameter (B,BA) is

-2
g, = 8/4 +28,/3 (7.5)

A continuum limit requires goz -+ 0; however, this can be done along
many paths in the (B,BA} plane. Previously we concentrated on the
trajectory BA = 0, 8 > =, Along that line no singularities are
encountered and thus confinement, present in strong coupling, should
persist into the weak coupling domain. However, an equally justified
path would be, for example, 8 = BA + =, In this case we cross a first
order transition. Because one can continue arcund it im our larger
coupling constant space, the tramsition is not deconfining and is

simply an artifact of the lattice action.



To test whether physical observables are indeed independent of
direction in the (B,BA) plane, we measured Wilson loops in the weak
coupling regime for several values of BA. The loop by itself is not
an observable, for reasons discussed previously. As then, we con-
structed ratios of loops with the same perimeters and numbers of

corners. Thus we define

W(I,J) W(K,L)
W(I,L) W(I,&)

Wishing to compare points which give similar physics, we searched

R(I,J,K,L) = (7.6)

at each value of BA for the values of 8 for which R(2,2,3,3) had

the values 0.87 and 0.93, This gave the points in the (B’BA) plane
shown in Fig. 12. The dashed lines in this figure represent comstant
bare charge from eq. (7.5). 1If physics is indeed similar at the
corresponding points, then all ratios R of eq. (7.6) should match.

DISCRETE TRANSITION LINE
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Fig. 12 Points of "constant physics". The solid points give
R(2,2,3,3) = 0.87 and the open circles give
R{2,2,3,3) = 0.93.
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In Fig. 13 I show several such ratios as functions of BA and at the
R(2,2,3,3) = 0.87 points from above. The comparison is quite good
considering that finite cuteoff corrections are ignored.

Note that in this comparison the bare charge is far from being
2 constant., In Fig. 12 we see that goz varied from less than unity
to nearly 4 while holding R(2,2,3,3) fixed at 0.87. Such variation
is permissible and perhaps even expected since the bare charge is
unobservable and should depend on the cutoff prescription. The
dependence can be characterized by a BA dependent renormalization
scale defined as in eq. (3.9). Using this relationship, I show
in Fig. 14 A, as a function of 8. Note the consistency of the
R(2,2,3,3) = 0.93 and 0.87 results. Remarkably, the addition of
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Fig. 13 Physical ratics along the R(2,2,3,3) = 0.87 contour.
Solid circles are from lcops in the fundsmental repre-
sentation, open circles from the adjeint.
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BA can change Ao by several orders of magnitude. This dependence

can in principle be checked with a perturbative calculation.

CONCLUDING REMARKS

I hope to have conveyed to you that lattice gauge theory is
both an exciting and a rapidly evolving technique for the particle
physicist. We are coming frighteningly close to calculating some
real numbers for the strong interactions. The main stumbling block
at this stage is the inclusicn of light quarks. Courageous attempts
at such calculations are being made, however, at prasent these are
severaly demanding on computer time and only practical on the most
modest lartices. Technical breakthroughs are likely in this area.
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